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Abstract. The Laser ultrasonic technique (LUT) is an interesting method to perform 

inspection of large aeronautical panels of complex shapes. Its non-contact feature 

avoids coupling problems and could improve the efficiency of the NDT inspection 

in the composite manufacturing industry. If the ultrasound generation process is well 

understood in metallic samples, the application of the technique in composite parts 

is more complex. Semi-analytical and numerical models are implemented to 

describe the ultrasonic generation in metallic and composites materials. A detailed 

description of the ultrasonic source due to the laser radiation absorption in the 

material is provided according to suitable parameters.  

Introduction  

Laser ultrasonics deals with the generation and detection of ultrasound in a solid 

medium using laser beam. Typically, the technique uses laser irradiation to induce 

ultrasound by either ablating the medium or using rapid thermal expansion. The resulting 

ultrasonic wave packets are also typically measured using optical probes. Laser ultrasonics 

therefore provides a noncontact way of carrying out ultrasonic interrogation of a medium to 

provide information about is properties. Laser ultrasonic measurement systems are 

particularly attractive to nondestructive structural and materials characterization of solids 

because they are noncontact leading to increased speed of inspection, have a very small 

footprint and can be operated on curved surface and are broadband systems providing 

information from the kHz to the GHz range. In this article, the basis of the laser ultrasonic 

technique as related to nondestructive characterization of solid materials is discussed. The 

basic process of laser generation of ultrasound is described and a promising modelling 

approach has been investigated. It consists in a fully numerical approach of the 

thermoelastic problem that allows simulating the multi-stacking structure of composite 

parts with complex shape. 

1 Laser Ultrasonic Testing 

Recently laser-generated ultrasound has been extensively exploited for 

characterizing materials. The application of laser ultrasonic has received considerable 

attention in a wide range of non-destructive evaluation (NDE) of structures [1] such as 

cracks detection, measuring bulk material properties and detecting disbands in laminated 

materials, coated materials or in adhesively bonded assemblies. 

http://creativecommons.org/licenses/by-nd/3.0/


2 

1.1 Principle of the technique  

A pulsed laser beam impinges on a material and is partially absorbed by it. The 

electromagnetic power that is absorbed by the material is converted to heat, leading to rapid 

localized temperature increase. Ultrasonic waves can be generated by two mechanisms 

depending upon the power density of the laser incident beam. At high energy density, a thin 

surface layer of the solid material melts, followed by an ablation process whereby particles 

fly off the surface, thus giving rise to forces which generate the ultrasonic waves. At low 

energy density, the surface material does not melt, but it expands at a high rate and wave 

motion is generated due to thermoelastic processes. For applications in non-destructive 

testing (NDT), ultrasound generated by laser irradiation in the thermoelastic regime is of 

interest.  

It is important to characterize the ultrasound generated by laser heating of a material 

in order to determine the amplitude, frequency content, and directivity of the generated 

ultrasonic beam. If the material ablates, the ultrasound that results from momentum transfer 

can be modelled as arising from a normal impulsive force applied to the surface. Analytical 

solutions to this problem can be obtained by appropriate temporal and spatial convolution 

of the elastodynamic Green function (solution for an impulsive point force on a half-space) 

[2]. For thermoelastic generation on materials such as metals where the light energy is 

absorbed in a very thin layer on the surface, Scruby [3] argued that the relevant 

elastodynamic problem is that of shear dipoles acting on the surface of the sample. His 

argument was based on the consideration that a point expansion source in the interior of a 

solid can be modelled as three mutually orthogonal dipoles and this degenerates into a pair 

of orthogonal dipoles as the expansion source moves to a free surface. This approach was 

given a rigorous basis in the form of a surface centre of expansion model proposed by Rose 

[4] and further developed by Spicer [5]. McDonald [6] and Sanderson [7] improved this 

model, taking into account both thermal diffusion and the finite spatial and temporal shape 

of the laser pulse on metals. Usually, optical detection system measures the normal 

displacement at the surface of the sample. It corresponds to the most common laser 

interferometric detection [8]. 

 

1.3 Governing equations  

The governing equations of the generalized thermoelasticity in the linear elastic 

case are given by the coupled heat conduction and wave equations describing the coupling 

of displacement and temperature fields. In the present work a 2D case with plane-strain 

boundary conditions is investigated, which is a good approximation of a line-focused laser 

source. The hyperbolic heat equation is given as: 
 𝜌𝑐𝑣  (𝑇)( �̇� + 𝜏�̈�) =  𝛁2(𝜅(𝑇). 𝑇) + 𝑞 + 𝜏�̇� − 𝑇0 𝜷 𝛁�̇� ( 1 ) 

 

Where 𝑇 = 𝑇(𝒓, 𝑡) denotes the temperature, 𝜅 the thermal conductivity, 𝑐𝑣 the specific heat 

of the material at constant deformation, 𝑇0 the ambient temperature, 𝑞 = 𝑞(𝒓, 𝑡) the 

external heat flux, 𝜌 the density, 𝜷 the thermal moduli, 𝒖 the displacement, 𝜏 the thermal 

relaxation time and the dot symbol corresponds to the time derivative.  

Substituting the constitutive law 𝝈 = [𝑪]: 𝛁𝒖 and the thermal stresses 𝝈𝑻 =
[𝑪]: [𝛼]𝛁𝑻 in the equilibrium law 𝛁 ∙ 𝝈 = 𝜌�̈� gives the wave equation with a term source in 

the right hand side: 
 𝛁 ∙ ([𝑪]: 𝛁𝒖) − 𝜌�̈� =  [𝑪]: [𝜶] 𝛁𝑻 ( 2 ) 
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where [𝑪] and [𝜶] stand for the stiffness tensor and the thermal dilatation tensor 

respectively. For simplicity a fully decoupled linear analysis for homogeneous, isotropic 

materials is considered. The basic problem of thermoelastic generation of ultrasound can be 

decomposed into three sub problems: (1) electromagnetic energy absorption by the 

medium, (2) the consequent thermal diffusion problem with heat sources due to the 

electromagnetic energy absorbed, (3) and the resulting elastodynamic problem with 

volumetric sources due to thermal expansion. The temperature increase is assumed not to 

change the elastic, electromagnetic, or thermal properties. And the mechanical 

displacement is assumed not to alter the thermal profile of the material. 

 
For given boundary conditions, the solution of the wave equation can be calculated 

analytically [10] or by numerical methods as described in this article. Since the temperature 

field induces the stress and displacement fields and the effect of the displacement fields on 

the temperature field is assumed negligibly small, the sequential field coupling is used. 

First, the Finite integration technique is used to simulate the temperature field. Then, the 

displacement fields are simulated using a finite difference time-domain solver.  

3. Numerical scheme for solving the thermoelastic equations in laser ultrasonics 

3.1 Finite Integration Technique (FIT) for solving the heat equation 

Hereafter, we propose a discrete formulation for the heat equation. The starting point 

for the discrete formulation is the energy conservation equation in a finite volume V  
 

 
( 3 ) 

 

Where ρ is the density of the material (in kg m
-3

), cp the mass heat capacity (in J kg
-1

 K
-1

),  

T the absolute temperature (in K), Qs the heat source (in J kg
-1

) and J the flux thermal 

density. This latter is related to the thermal field by the Fourier’s law: 
  ( 4 ) 

 

with κ the thermal conductivity of the material (in W m
-1

 K
-1

). 

 

To discretize the equations (3) and (4), we define in the domain problem a system of grids 

of the Yee type that are orthogonal and shifted as be shown in Pic. 1. By convention, the 

two grids are called the primary grid (solid black lines Pic. 1) and the secondary grid 

(dashed red lines in Pic. 1) respectively.  

In the FIT numerical scheme, all the scalar variables will be associated to the nodes of the 

primary grid whereas the secondary variables will be associated to the primary grid edges 

and to the facets of the secondary grid. The exact definition of the state variables will be 

given later. 
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Pic. 1. System of the grids used in discretizing the conservation and the Fourier’s laws. The solid black lines 

show the edges of the primary grid and the dashed red lines show the edges of the secondary one.  

 

Expressing the equation (3) in a cell of the secondary grid give us 
 

 
( 5 ) 

Integrating the equation (4) in a flux tube from the nodes i et j give us 
 

 
( 6 ) 

 

Then we expand T and J in Taylor series around the centre of cell of the primary grid ri and 

the centre of the edge li respectively  
  ( 7 ) 

 
  ( 8 ) 

 

Applying (7) and (8) in (5) and (6) keeping only the first order terms give us 
 

 
( 9 ) 

 
 

 
( 10 ) 

 

with Ji’=J(ri) et Ti=T(ri) where ΔAi’ is the oriented surface element. One can note that in the 

case of the material is homogeneous in the secondary cell and along the corresponding 

edges, the second order approximation is implemented to prevent the cancelation of the first 

order after the integration. 

 

We define the state variable as following 
  ( 11 ) 

 
 

 
( 12 ) 

 

The temperature of the primary cell nodes and the thermal flux through the facets of the 
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secondary grid. We define also the material matrices as 
 
 

 
( 13 ) 

 
 

 
( 14 ) 

 

Applying (9) and (10) in all the secondary cells and using the topological operators of the 

FIT method [9, 10], we obtain the following system of equations 
 
  ( 15 ) 

 
  ( 16 ) 

 

which after eliminating the thermal flux term give us the following equation  
 
  ( 17 ) 

 

 That is the discrete formulation of the heat equation.  

 

The formulation (17) is an initial values problem. To resolve it, we discretize the thermal 

derivative with a finite difference scheme. 
 
 

 

( 18 ) 

 

The time axis t is discretized with a homogeneous grid tn=nΔt, n=0,1,…,Nt                                               

and we apply (18)  in  (17). The latter becomes 
 
 

 

( 19 ) 

 

Starting from the initial value of the thermal field θ0 we iterate in the time and at each n+1 

time step, we evaluate the temperature θn+1 from the value at the previous time step θn. One 

can remark that (19) is an implicit scheme, i.e. the following value θn+1 is obtained 

resolving a system of linear equations. 

 

3.2. Numerical example and validation 

 The FIT formulation defined above is applied to the resolution of a 1D problem for 

validation purpose. Let us consider an aluminum plate located in two temperature fields of 

constant temperature equal to 50°C and 100°C respectively. The physical parameters of the 

aluminum plate are ρ = 2707 kg m
-3

 for the density, cp = 0.897 J kg
-1

 K
-1

 for the heat 

capacity and κ = 237 W m
-1

 K
-1

 for the thermal conductivity. We consider that the initial 

temperature of the plate is 0°C.  
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 Pic. 2 (left) shows the evolution of the thermal equilibrium at the center of the plate. 

The FIT solution (in green) is compared to the analytical solution (in blue). Excellent 

agreement is obtained between these two models. Pic. 2 (right) represents the temperature 

profile inside the plate after the plate was located in the two thermal fields. Excellent 

agreement is also obtained justifying that the solution of the heat equation by the FIT model 

is valid. 
 

  

Pic. 2. Comparison between the analytical solution (in blue) and the FIT solution (in green) for (a) the 

evolution of the temperature at the centre of the plate and (b) the thermal profile within the plate after 1s.  

 As a second validation example, let us consider the same plate that is located in the 

air. Physical parameters of the air are ρ = 1.1843 kg m
-3

, cp=1.005 J kg
-1

 K
-1

 and 

κ = 0.02454 W m
-1

 K
-1

. Boundary conditions are a Dirichlet conditions (constant 

temperature at one boundary of the plate). We locally excite the plate with a heat pulse of 

500ms at the surface of the plate. Pic. 3 reports the temperature distribution in the plate and 

in the air at several times: 1, 1.2, 2 and 5s. 

 
 

  

Pic. 3. Evolution of the thermal field inside the plate at different times: 1, 1.2, 2 et 5 s (from left to right and 

top to bottom). 
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 3.3 Finite Difference Time Domain scheme for solving the wave equation 

A numerical code has been developed by Airbus, in order to simulate ultrasonic 

propagation within flat or curved composites. This code aims at simulating inspection of 

complex (geometry and inner structures) composite parts such as anisotropic parts with 

account of the rotation of the crystallographic orientation within curved composites (for 

instance stiffeners). To deal with these complex and mixed phenomena Airbus Group 

Innovations has developed numerical codes with a Finite Difference in Time Domain 

(FDTD) scheme on staggered grids in space and leap-frog in time. The implemented model 

is a stress-velocity scheme proposed by Virieux, which is depicted below in Pic. 4: 

 

Pic. 4. FDTD numerical scheme. 

 

This model considers a propagation medium in which the local material properties 

are associated to the corresponding cells of the mesh. This allows description of strongly 

heterogeneous and anisotropic materials such as curved composites with waviness. A 

Perfectly Matched Layers (PML) model is implemented for the boundary conditions to 

simulate non-reflective boundaries.  Pic. 5 below illustrates the CIVA/FDTD hybrid code 

for composites which has been developed through the project; this picture shows the curved 

composite (multi-layered composite parts) and also includes two different flaws: ply 

waviness, as well as a planar flaw, which are representative of main composite damages. 

 

 

Pic. 5. Window of the CIVA software with a curved composite. 
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Various applications of this module have been investigated by CEA. Main conclusions 

drawn from this development is the ability of this hybrid module to simulate new 

configurations which were not solved yet such as:  

 Study of structural noise due to ultrasonic resonances in pure resin within 

composite plies (such features were also previously demonstrated using the FDTD 

code as a standalone module, but it has been facilitated through parametric settings 

of the composite structure)  

 Study of ply waviness effects: the ability to set parameters related to ply waviness 

(width, height, amplitude) is an innovative new skill which allows predicting 

induced noise and back wall attenuation due to such waviness within composites.  

 Study of delamination flaws: It is also possible to add several planar flaws within 

the simulation configuration, which allows to mimic a delamination after impact 

damage, which is characterized by successive decohesions at various interplies 

levels.  

Conclusion 

This consists in a fully numerical approach of the thermoelastic problem that allows 

simulating the multi-stacking structure of composite parts with complex shape. A thermal 

solver has been implemented by the Finite Integration Technique. The increase in the 

temperature field due to the laser pulse creates thermal stresses in the sample. These 

thermal stresses are then introduced as a volume source in an elastodynamic FDTD solver. 

However this approach has its own limitation that consists in taking into account the high 

frequency content of the ultrasonic waves generated by short laser pulse. Indeed, this needs 

to decrease drastically the spatial and time meshes giving prohibitive calculation times. We 

are now working to solve some problems due to numerical instabilities in the coupling 

method. We are confident that this simulation tool will be of great interest for the 

simulation of the inspection of composite parts by the laser ultrasonic technique. 
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