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Abstract. Due to the difficulties encountered to predict the long-term behaviour of 

composite structures in operating conditions, a real-time monitoring of their 

integrity is required in order to anticipate catastrophic failures. Although the early 

detection of crack initiation and propagation is beyond the potential of most non-

destructive techniques (NDT), acoustic emission (AE) is one of a limited number of 

methods that possess the capacity for continuously detecting the occurrence of 

damage in large composite components or structures. Even if promising and 

successfully exploited in several industrial fields using commercial systems, AE has 

not provided at this time an effective NDT tool for composite industry, in particular 

for mobile structures and in-service applications. 

 For such applications, the main difficulties are related to the real-time 

processing of a huge amount of complex AE time-series originating from multiple 

sensors. One major problem is the discrimination of AE signals generated by 

different damage modes from other external AE sources such as electromagnetic and 

mechanical noises which are mainly generated by the surrounding environment. 

Another important problem is the processing of continuous and complex AE signals 

resulting from high AE rates, from the superimposition of transients emitted by 

different sources, and from the distortion induced by damage accumulation. 

 We have developed a method able to objectively discriminate with robustness 

AE signals generated by a specific damage mode from other AE sources in carbon 

fibre reinforced composites submitted to complex loading. This method includes 

wavelet transform-based signal processing and unsupervised multivariate pattern 

recognition. This latter relies on a new approach based on the fusion of multiple 

clusterings, also called consensus clustering, leading to a robust assessment of 

damages together with a quantification of uncertainties. We have demonstrated on 

real cases that the proposed method is able to efficiently process massive AE data, 

as encountered in operating conditions, and take into account the distortion of the 

AE signals as well as the evolution of the clusters shape induced by the wave 

attenuation and damage accumulation in composite materials submitted to cyclic 

loading. 
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Introduction  

A widespread application of composite materials in lightweight structures can be noted 

during these recent decades thanks to their superior fatigue resistance compared to 

traditional engineering materials (steel, aluminium alloys…). In the aerospace industry, a 

large variety of components that must withstand extreme cyclic loads for long times 

(aircraft propellers, wings, helicopter rotor blades, rotating machinery…) are increasingly 

made of composites. When these components are exposed to fatigue load conditions like 

stress or thermal cycling, damages such as matrix cracking, fibre tow breakage, debonding 

or delamination can be initiated and propagate until failure [1].  

Structural Health Management (SHM) aims at anticipating failures on mechanical 

structures and performing maintenance at the right time and place. For that, three important 

problems are generally faced: 1) instrumentation, 2) data processing and 3) decision-

making. Instrumentation is focused on the selection, or development, and location of the 

appropriate sensors in order to get relevant information about both critical damages, which 

could occur at various scales within the structure, and about loading and operational 

conditions, which may have an impact on the material properties. Interactions with the 

designers and experts in material science are generally necessary to obtain subtle priori 

knowledge about the behaviour of the structure. The measurements and priori knowledge 

obtained by instrumenting the structures are then used in a data processing unit. Data 

processing is the second important problem which allows one to eventually get high level 

information about the current and future level of damage. For that, specific data mining, 

pattern recognition or machine learning techniques have to be developed and validated. 

Those algorithms can also give a hand in the identification of the damage families and their 

location within the structure. Such information is indeed important for decision-making, in 

order to select the correct action to perform among a set of alternatives and in presence of 

many sources of uncertainty, before the occurrence of critical damages or total failure. 

The SHM literature is rich. In this paper, we consider Non-Destructive Evaluation 

(NDE) technologies, in particular Acoustic Emission (AE). AE is an effective NDE 

technique able to ensure an in-situ monitoring of the structure and has been used to detect 

damages at a very early stage well before the structure fails [2]. Among the pros of the AE 

technique is the ability to monitor damage initiation and accumulation in real-time, which is 

not possible with most other NDE techniques [3]. However, the prediction of the remaining 

lifetime of composite structures is still a challenging issue. A reliable lifetime assessment 

needs a well understanding of the damage mechanisms and kinetics, as well as an efficient 

real-time signal processing and data analysis able to discriminate the damage-related AE 

events from other external sources (electromagnetic and mechanical noises such as rubbing 

and friction) which are mainly generated by the surrounding environment. Among the 

major issues for lifetime prediction of composite structures is the processing of continuous 

and complex AE signals. The complexity induced by high AE rates, various sources with 

unknown properties and damage accumulation. 

This paper presents a methodology covering the three aforementioned problems and 

that has been implemented for SHM of various composite materials at FEMTO-ST 

Institute. Illustrations used subsequently are focused on particular ring-shaped Carbon Fibre 

Reinforced Polymers (CFRP) optimized to reproduce, at the scale of laboratory specimens, 

complex stress fields that can be measured in high performance tubular-shaped composite 

structures submitted to complex solicitations in extreme environmental conditions. The 

main advantage of the proposed methodology is the possibility to extract with high 

robustness useful patterns from AE streaming, originating from multiple sensors distributed 

on the structure. A preliminary screening process based on the discrete wavelet transform 

allows one to perform efficient wave picking despite high and complex noise level due to 
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the environmental conditions and to the geometry of the structure [4]. The patterns obtained 

from the sequence of AE waves contain information about the accumulated damages and 

emphasize avalanches of micro/macro structural changes [5]. Those patterns are 

accompanied by a quantification of the uncertainty inherent to the parameterization of the 

algorithms which is useful for decision-making. The second advantage is also the 

possibility to “learn” the behaviour of the material from AE data obtained during quasi-

static tests and to refine and adapt these statistical models during fatigue tests [6]. 

1. Mechanical Testing and Instrumentation  

Several experimental configurations have been used with various specimen geometries, 

materials, and modes of solicitation. For tubular structures, the ASTM D2290 standard test 

procedure has been developed for apparent hoop tensile strength of plastic or reinforced 

plastic pipe by split disk method. We have performed several tests according to this 

standard on CFRP rings, as shown in Figure 1(a). Specimens were 1.5mm-thick with an 

outer diameter of 124mm and a width of 16mm, mounted on a tensile testing machine using 

two clamping jaws. The test consisted in a monotonic tensile loading up to failure on the 

composite ring starting from 0N to 60kN with a speed of 15kN/s. The test was performed 

under a relatively high noise level (55dB) created by the hydraulic system of the tensile 

machine. The high loading rate engendered a high AE rate in order to simulate in-service-

like cyclic loading under severe working conditions, and yielding complex AE signals 

made of continuous emissions and damage-related transients superimposed.  

A PCI2-based AE system provided by Mistras Group was used. It is based on the 

conventional threshold technique for extracting the AE hits. Four wide-band AE sensors of 

Micro80-type were fixed on the jaws. Each sensor is equipped with a 20dB pre-amplifier. 

Sampling rates usually encountered ranged from 2 to 5 MS/s. A band-pass filter with a 

frequency range of [20 kHz - 1 MHz] was configured. 

Another configuration has been also used on rectangular specimens, as illustrated in 

Figure 1(b), to monitor the effect of the damage evolution on the AE waveforms and 

features. The tested material is a ±45◦ biaxial carbon fibre reinforced epoxy resin. The 

specimens are 250×25×3.5mm and composed of eight plies stitched with textured polyester 

yarn. In order to determine the composite material properties, several quasi-static tensile 

tests were performed on healthy specimens. Other specimens were also subjected to tensile-

tensile fatigue tests at different loading levels. 

 

 
(a) Ring. 

 
(b) Beam. 

 

Figure 1. Test configurations on different types of specimens. 
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2. Data Processing  

2.1. Data Screening 

Some AE features are retrieved from the data acquisition file of the AE system. Figure 2(a) 

(“raw”) shows the amplitude of the detected hits obtained using the threshold-based 

technique of the commercial AE system. The loading has taken place approximately 

between 4th and 7th second before the complete failure of the ring. Durations are 

represented as a function of time in Figure 2(b) (“raw”) and are all equal to the maximum 

duration predefined in the AE system (200ms) due to a saturation phenomenon explained 

by the aforementioned continuous emissions. These hits are thus poorly separated. 

Increasing the threshold would help to avoid saturations, but this might eliminate many 

damage-related hits. This issue shows the limitation of the threshold-based technique 

frequently used in the AE applications and the need of an efficient signal processing of the 

raw AE data. 

 
(a) 

 
(b) 

 

Figure 2. Problem illustration of AE processing using the standard (“raw”) and the proposed approach 

(“processed”) for a quasi-static tensile test on a CFRP ring. (a) Amplitude and (b) duration over the 

acquisition time. 

An AE signal processing approach has been proposed where the Discrete Wavelet 

Transform (DWT) is employed for an efficient denoising [4, 7]. As the choice of 

appropriate denoising parameters is crucial for obtaining a high signal-to-noise ratio, we 

have developed a simple and efficient procedure based on pencil lead breaks. Figure 2 

(“processed”) shows the results obtained by the proposed approach. The most important 

ascertainment is that the saturation phenomenon is now eliminated (Figure 2(b)). All the 

separated hits have durations less than the pre-defined maximum duration (200ms). The 

number of detected hits before the start of the loading is greatly reduced. This method has 

demonstrated that an appropriate hit detection leads to a reliable identification of natural 

clusters in AEs and improves the interpretation of damage mechanisms [4]. 

2.2. Feature Extraction and Selection 

The features aim at representing an AE signal by a finite set of relevant values describing 

and characterizing the signal in a compact form. Generally, many features are extracted 

from AE signals and can be regrouped into two main categories: time-based features (such 

as various forms of the energy like absolute energy, MARSE energy or RMS, amplitude, 

zero-crossing, duration and so on), and frequency-based features (peak frequency, partial 

powers, wavelet coefficients and so on). The problem is then to automatically select the 

most relevant features from this list made of potentially relevant or irrelevant features.  
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(a) Diagram of the AE hits duration (log scale) [µs] against amplitude [dB]. 

 
(b) Diagram of the cumulated damages (clusters) with uncertainty envelops (log scale, called CSCA) 

against loading [kN]. Solid line: results of the clustering fusion [5]. 

 

(c) Representativeness of features used in the fusion process (automatically selected using an 

information-theoretic formulation) 

 

Figure 3. Results of the fusion process proposed in [5] on a CFRP ring. 

Standard approaches consist in applying the principal component analysis [8] or to 

apply wrapping-based selection [9] or filtering-based selection [6]. A new fusion-based 

approach, specifically dedicated to AE signals, has been developed in [5]. It automatically 

selects multiple subsets of multifarious features which are eventually exploited by an 

information fusion unit to get a robust decision about the damage families. The number of 

clusters is also optimized by an information-theoretic criterion. The results of this method 
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on the previously studied ring are shown in Figure 3, which depicts the clusters in the 

duration-amplitude space (Figure 3(a)) with complex clusters shape, the evolution of the 

cumulated damages during the test (Figure 3(b)) and the occurrence of features used in the 

fusion process (Figure 3(c)). The fusion (Figure 3(b)) can allow a designer to quantify the 

loading thresholds required to activate some damages (onsets) and for their propagation. 

2.3. Health Indicator Estimation 

A health indicator (HI) aims at quantifying the level of degradation [10] based on observed 

variables. Practically, several HIs can be computed and combined according to the amount 

of uncertainty about the health status. For composites, several factors may have an 

influence on the fatigue endurance and those factors make it difficult the reliable estimation 

of HIs [11]: Residual stress and initial defects (e.g. due to manufacturing), stress state 

during cycling (stress amplitude, load sequence), modification of the geometry that may 

yield stress concentrations (e.g. due to impact or replacement, initiation and propagation of 

macro-cracks, delamination level) or the variation of the surrounding environment 

(humidity, temperature). For CFRP, we have considered the remaining stiffness (Figure 

4(a)), the S-N curves, the evolving area of cracks over the time computed from optical 

apparatus (Figure 4(b)) and the temperature released at the surface [12]. The combination 

of those NDE methods allows getting some information about the fatigue endurance. Using 

AE signals, the cumulated absolute energy is a common approach to monitor crack onset 

and growth in composites [13-15].  

 
(a) Stiffness degradation with cycling 

loading. 

(b) Area of a crack opening and closing over the time. 

 

Figure 4. Health indicators built during fatigue tests on CFRP. 

2.4. Health Assessment and Diagnostics 

AE features and HIs are then used for health assessment, involving both the estimation of 

the degradation level and the quantification of the evolution of particular damage families, 

and diagnostics aiming at finding the cause of damages. When using the AE technique, one 

challenge is to perform the health assessment in real-time during fatigue testing. In [6] and 

[16], we have proposed new data-driven approaches able to distinguish between several AE 

sources (potentially damage families) based on massive AE streaming originating from 

highly emissive CFRP. To cope with the quantify and the quality of AE signals, the concept 

of evolving models has been exploited to build and refine two statistical models: one that 

discriminates between noise and non-noise AE signals, and another that assigns AE 

sources. Both models are refined with new measurements, meaning that their parameters 

are adapted along cycles. 
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3. Towards a Better Lifetime Prediction 

Several bottlenecks have to be unlocked in instrumentation, data processing and decision-

making. Below are presented two important problems currently tackled. 

3.1. Hybrid Models 

Combining material and data sciences for enhanced on board monitoring of structures was 

underlined more than a decade ago as a key challenge [17] (Figure 5(a)). This is still an 

open problem called “hybrid” SHM that requires solving problems at both the material and 

the data mining levels. Our current developments on this area are focused on tubular 

structures for aerospace and transport applications. Promising results were obtained by 

combining multiphysics modelling and AE technique (Figure 5(b)). The integration of 

those algorithms for robust in-situ prognostics is under way. 

 

 
 

(a) General methodology for SHM, adapted from [17]. 

 
 

(b) Numerical modelling of AE generation and 

propagation in tubular composite 

structures. 

 
Figure 5. Hybrid prognostic approach based on numerical and statistical modelling. 

3.2. Prognostics 

A damaged structure can still ensure its mission, but the evolution of particular properties 

may lead a decision-maker to reconfigure the structure or perform mission replanning. 

When reliable health indicators are available on board, mathematical models can be fitted 

for predicting their future trend. However, due to many external factors and sources of 

uncertainty, it is practically difficult to apply those approaches in real cases. The AE 

technique together with efficient data processing would bring useful information about 

damages for design improvement and robust in-situ prognostics. 
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